# NOTE ON A PAPER OF B. GRÜNBAUM ON ACYCLIC COLORINGS

BY

GERD WEGNER

### ABSTRACT

The aim of this short note is to improve some recent results of B. Grünbaum by some remarks. We use Grünbaum's notations.

## 1.

Grünbaum gives an example of a planar graph with 14 vertices which is not (1,3)-colorable and mentions that this is the smallest known planar graph having this property. It is easy to verify that the graph  $G_1$  in Fig. 1 below with 11 vertices is also not (1,3)-colorable. It may be shown that 11 is the minimum number of vertices (obviously one has to check only maximal planar graphs without vertices of degree 3 and there are only 20 such graphs with less than 11 vertices).



Received August 31, 1972

### G. WEGNER

2.

The graph  $G_2$  shown in Fig. 2 is not (1,1,2)-colorable, thus giving an affirmative answer to a conjecture of Grünbaum (compare remark (4) in [1]).  $G_2$  contains as subgraphs a 4-clique and six copies of  $G_3$  (see Fig. 3) combined in such a manner that each pair of vertices of the 4-clique is the basis pair of vertices of a copy of  $G_3$ .  $G_3$  is a subgraph of the graph of Fig. 8 of [1] and has the property that any 4-coloring of  $G_3$  (C does not necessarily contain both vertices u, v themselves). Now it is obvious that  $G_2$  is not (1,1,2)-colorable.



Fig. 3

3.

Finally we consider the problem mentioned in remark (12)(i) of [1]. Concerning the special case of diagonalized polygons we prove:

Each diagonalized polygon has a 6-coloring in which each bicolored path involves at most three vertices.

To prove this we note first that each diagonalized polygon is isomorphic to a subgraph of some standard polygon  $Q_n$  (n = 0, 1, 2, ...), where  $Q_0$  is a triangle and  $Q_n$  is obtained from  $Q_{n-1}$  in the following manner: To each edge e of  $Q_{n-1}$ , which is adjacent to the unbounded face F of  $Q_{n-1}$ , we associate a new vertex v(e) lying in F and we connect v(e) with both vertices of e by edges, thus attaching  $3 \cdot 2^{n-1}$  new triangles to  $Q_{n-1}$  (see Fig. 4). Now it is sufficient to give a 6-coloring of  $Q_n$  with the required property. For each k we consider  $Q_k$  as a subgraph of  $Q_{k+1}$  as indicated by the construction above. Thus we have



 $Q_0 \subset Q_1 \subset Q_2 \subset \cdots \subset Q_k \subset Q_{k+1} \subset \cdots$ 

and each vertex v of  $Q_n$  may be supplied with a rank r(v) by setting r(v) = k iff  $v \in Q_k \setminus Q_{k-1}$  and k > 0 and r(v) = 0 iff  $v \in Q_0$ . Then each vertex v of  $Q_n$  has just two neighbours with rank  $\leq r(v)$ , where equality holds only if r(v) = 0.

Now a 6-coloring of  $Q_n$  will be defined by induction. First we assign different colors to all six vertices of  $Q_1$ . Now let r(v) = k > 1 and assume  $Q_{k-1}$  to be 6-colored. v has only two neighbors  $v_1, v_2$  with  $r(v_i) < r(v)$  and because of r(v) > 1 we have  $r(v_1) \neq r(v_2)$ , say  $r(v_1) < r(v_2)$ . Again  $v_1$  has two neighbors with rank  $\leq r(v_1)$  and likewise  $v_2$  has two neighbors with rank  $\leq r(v_2)$ , one of them being  $v_1$  (and the second coinciding possibly with a neighbor of  $v_1$ ). Thus this set of neighbors and of second order neighbors of v with decreasing rank contains at most five vertices and v shall get a color not occurring on these vertices. Since

G. WEGNER

the vertices of rank k are independent the 6-coloring of  $Q_{k-1}$  may be extended to all vertices of rank k in this way. So we get a 6-coloring of  $Q_n$  and this 6-coloring has the desired property. Consider any path in  $Q_n$  of length at least 3 with vertices  $v_1, v_2, \dots, v_j$   $(j \ge 4)$ . Then there is an index i either with  $r(v_{i-1}) \le r(v_i) \ge r(v_{i+1})$ or with  $r(v_{i-1}) \le r(v_i) < r(v_{i+1})$  or with  $r(v_{i-1}) > r(v_i) \ge r(v_{i+1})$ . In the first case,  $v_{i-1}, v_i, v_{i+1}$  are vertices of a triangle thus having three colors. In the latter cases, these vertices form a path of length 2 with monotonously increasing (or decreasing) rank; therefore, these vertices have different colors by construction of the coloring.

For diagonalized polygons, six is the best number; it is easy to see that  $Q_n$  needs six colors if  $n \ge 6$ . Simple examples show that a planar graph may need more than six colors for such a coloring.

## Reference

1. B. Grünbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973), 390-408.

Abteilung Mathematik, Universitat Dortmund, Dortmund, West Germany